关键词:
鱼类缺氧
人工智能
深度学习
YOLOv5s
ASR系数
摘要:
为解决传统鱼类缺氧检测方法准确率不高、需耗费大量人力的问题,提出了一种基于Prune-YOLOv5s的养殖鱼类缺氧风险评估方法。该方法首先采集鱼类缺氧进行水面呼吸(Aquatic surface respiration, ASR)时的数据集,并训练YOLOv5s模型,然后用经轻量化改进的YOLOv5s模型实时检测鱼类缺氧进行水面呼吸的行为,并引入鱼类ASR系数,设计鱼群缺氧评估模块实现鱼类缺氧风险评估。最后通过鱼类缺氧试验对改进前后YOLOv5s模型性能以及缺氧评估模块的准确率进行测试。结果显示:与原模型相比,Prune-YOLOv5s模型的性能得到明显提升,其中综合性能最优的65%_Prune_YOLOv5s模型,模型大小缩小至原模型的45.3%,在检测精度上提升0.6%,在推理速度上提升23.8%,在检测速度上提升31.4%。鱼群缺氧评估模块在测试集中的准确率可达97.4%,在鱼类缺氧试验周期中表现良好。研究表明,基于Prune-YOLOv5s的养殖鱼类缺氧风险评估方法能有效检测鱼类缺氧情况,准确给出风险提示,将在实际应用中具有较好的可行性。